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Abstract

When the boundaries of a domain meet at an angle, the solutions to an elliptic partial differential equation will usu-

ally be singular at the corner. Using the example of the Helmholtz equation on the surface of a sphere in a domain

bounded by meridians, we show how corner singularities can be defeated by mapping the corner to infinity. By applying

a Chebyshev series in longitude and a rational Chebyshev series in the ‘‘Mercator’’ coordinate, y = arctanh(cos(colat-

itude)), we obtain an exponential rate of convergence despite the corner singularities.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In spherical coordinates (k, l), where k is longitude and l is the cosine of colatitude, the Helmholtz equa-

tion on the surface of a sphere is
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1� l2
ukk þ ð1� l2Þull � 2lul þ k2u ¼ f ðk;lÞ; ð1Þ
where k is a constant. The domain is the sector bounded by the meridians k = 0, N, where N is a constant as

shown in Fig. 1. Similar sectorial wave problems arise in ocean tides [7,10,19,21] , but for expository
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Fig. 1. Schematic of a sectorial domain on the surface of a sphere. The thick dashed lines are the boundaries of the sector, defined by

two meridians, k = 0 and k = N, where k is longitude. The thick solid curves are the schematic isolines of a typical solution. Note that

the two meridians meet at an angle, forming a corner at the north pole; a similar corner exists at the south pole (not visible).
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purposes the simpler Helmholtz equation is better. For simplicity, we shall discuss only homogeneous
Dirichlet boundary conditions in most of the article, but we shall explain the easy generalization to inho-

mogeneous boundary conditions in Section 6.
2. Corner singularities

Corner singularities are the theme of books by Grisvard [11] and Kozlow, Mazya, and Rossman [15] and

Kondratiev�s long review [14]; the numerical implications and various remedies have been discussed by
many authors including [2,3,5,9,13,17,20,24,25]. For the present problem, note that (1) (for k = 0) has

homogeneous solutions
sinðskÞP s
nðlÞ; s ¼ jðp=NÞ; j ¼ 1; 2; . . . ð2Þ
It is well-known [1] that the associated Legendre function P s
nðlÞ is singular at both poles as (1�l2)s/2. The

homogeneous and particular solutions for the Helmholtz equations are generally singular, too.
3. Mercator coordinate

Almost half a millenia ago, the prolific cartographer Gerhard Mercator introduced the stretched latitu-

dinal coordinate that bears his name:
l ¼ tanhðyÞ $ y ¼ arctanhðlÞ: ð3Þ

This transformation is useful because
ð1� l2Þs=2 ¼ sechsðyÞ: ð4Þ

The branch points at l = ±1 have been moved to infinity. As explained in [5], the hyperbolic secant func-

tion, raised to any power, decays exponentially as jyj ! 1. Any reasonable basis set for the infinite interval

will yield a spectral series that converges exponentially fast [8,5].
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The chain rule implies
d

dl
¼ 1

sech2ðyÞ
d

dy
; ð1� l2Þ d

dl
¼ d

dy
: ð5Þ
The Helmholtz equation is transformed to
ukk þ uyy þ k2 sech2ðyÞu ¼ sech2ðyÞf ðk; lÞ: ð6Þ
4. Chebyshev/rational Chebyshev pseudospectral method

Because the solution on a sectorial domain is not necessarily periodic in k, the best spectral basis in lon-

gitude is Chebyshev polynomials. Because the standard interval for Chebyshev polynomials is x 2 [�1, 1], it

is convenient to introduce the new longitudinal variable
x � ð2=NÞk� 1 ! d

dk
¼ 2

N
d

dx
: ð7Þ
The Helmholtz equation becomes
4

N2
uxx þ uyy þ k2sech2ðyÞu ¼ sech2ðyÞf ðð1þ xÞðN=2Þ; lÞ; x 2 ½�1; 1�; y 2 ½�1;1�: ð8Þ
Our latitudinal basis is the set of rational Chebyshev functions [6], TBn(y; L). (Other choices are also pos-

sible as discussed in [4,5,16,22,23].) These have a width controlled by the constant L, the so-called ‘‘map

parameter’’ that appears in their definition (9) below. This must be optimized by trial-and-error; L = 2

worked well for our examples.
Both sets of basis functions are images of a Fourier cosine basis under a change-of-coordinate:
T mðcosðtÞÞ � cosðmtÞ; TBnðL cotðsÞ; LÞ ¼ cosðnsÞ: ð9Þ

The basis functions and their derivatives can be calculated by using these trigonometric definitions, differ-

entiating the cosines, and then transforming back to derivatives in x and y by applying the chain rule [8]
t ¼ arccosðxÞ; ð10Þ

dTm

dx
ðxÞ ¼ m

sinðmt½x�Þ
sinðt½x�Þ ;

d2Tm

dx2
ðxÞ ¼ � m2

sin2ðt½x�Þ
cosðmt½x�Þ þ m cosðt½x�Þ

sin3ðt½x�Þ
sinðmt½x�Þ; ð11Þ

sðyÞ ¼ arccotðy=LÞ; ð12Þ

dTBn

dy
ðyÞ ¼ nsin2ðs½y�Þ

L
sinðns½y�Þ; ð13Þ

d2TBn

dy2
ðyÞ ¼ 1

L2
�n2sin4ðs½y�Þ cosðns½y�Þ � 2n cosðs½y�Þsin3ðs½y�Þ sinðns½y�Þ

� �
: ð14Þ
One useful simplification is that the differential equation and boundary conditions are symmetric with re-

spect to both x = 0 and y = 0. This implies that the computational task can be split into four subproblems.
(Because the cost of factoring a dense matrix grows as the cube of the matrix size, it is cheaper by a factor of

sixteen to solve four matrix problems of size Ntotal/4 than to solve a single matrix of size Ntotal.)

For simplicity, we shall describe the solution of the symmetric-symmetric subproblem. That is, we shall

assume that f(x, y) = f(�x, y) = f(x, �y) for all x and y and similarly for u(x, y).
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As explained in [8], an arbitrary function g(x) can always be split into its symmetric and antisymmetric

parts, S(x) and A(x), by S(x) = (g(x) + g(�x))/2 and A(x) = (g(x)�g(�x))/2. By applying this decomposi-

tion in both x and y, an arbitrary f(x, y) can always be decomposed into the sum of a function fSS which

is symmetric in both x and y plus a function fSA(x,y) which is symmetric in x but antisymmetric in y plus a

part which is antisymmetric in x but symmetric in y and finally a portion which is antisymmetric in both
coordinates. Thus, we lose no generality by restricting attention to forcings and solutions that have definite

symmetry in both coordinates.

To enforce the homogeneous boundary conditions, we write (for a function symmetric in both x and y)
uðx; yÞ ¼
XM
m¼1

XN
n¼1

amn T 2mðxÞ � 1f g TB2nðy; LÞ � 1f g: ð15Þ
Each basis function is individually zero at x =±1, y =±1 because T2m(±1) = 1 and TB2n(±1) = 1 for all m, n.

The basis functions of odd degree are antisymmetric with respect to the origin, so to compute the part of the
solution which is antisymmetric in x, we would replace T2m(x)�1 by T2m + 1(x)�x, and similarly use

TB2n + 1(y;L)�TB1(y;L) for parts of u(x, y) which are antisymmetric with respect to the equator.

The pseudospectral method employs a grid which is all possible combinations (xi, yj) of the one-dimen-

sional grids defined by
xi ¼ cos
2i� 1

4M
p

� �
; i ¼ 1; 2; . . . ;M ; yj ¼ L cot

2j� 1

4N
p

� �
; j ¼ 1; 2; . . . ;N : ð16Þ
Because of the double symmetry, the grid points are confined, for each of the four subproblems, to the

upper right quadrant of the x–y plane, x 2 [0, 1] and y 2 [0, 1].

Substituting the expansion into the differential equation and collocating at each of the MN grid points
generates a linearMN · MNmatrix problem which is solved by the usual LU factorization. WhenM, N are

large, the O([2/3]M3N3) cost of the factorization can be greatly reduced by solving the linear algebra prob-

lem using a preconditioned iteration instead of Crout reduction [8]. However, this is rarely necessary for a

two-dimensional problem in a single unknown.
5. Numerical examples

5.1. Example one

As a test problem with a known exact solution, we chose
f ðk; lÞ ¼ cosð3kÞð1� l2Þ3=2ðk2 � 12Þ; u ¼ cosð3kÞð1� l2Þ3=2 ð17Þ

with k = 1 and N = p/3 so that the domain is one-sixth of the sphere. Note that u has a branch point at both

poles, l =±1. A double Chebyshev series would converge only as O(1/N3) [O(1/N4) for the coefficients],

where N is the truncation in latitude ([8], p. 60). The exact solution is the spherical harmonic Y 3
3ðk; lÞ,

so there is nothing atypical about this example.

The numerical results are illustrated in Fig. 2 and Table 1. An important point is that the rate of con-

vergence with M, the number of Chebyshev polynomials, is geometric, that is, the error falls proportional
to exp(�qM) for some constant q. However, it is known [6,8] that the normal rate of convergence for

expansions on an infinite interval is ‘‘subgeometric’’, that is, proportional to an exponential whose argu-

ment is a fractional power of the truncation, typically expð�q0
ffiffiffiffi
N

p
Þ, where q 0 is another constant. Thus,

we expect that the rate of convergence will be highly anisotropic: it is necessary to choose N (truncation

in the TB series in y) much larger than M.
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Fig. 2. The negative of the base-10 logarithm of maximum pointwise (L1) error versus the truncations M and N. Thus, a vertical

height of 8 is equivalent to an absolute error of 10�8.

Table 1

Errors versus resolution for the test problem with L = 2

M N Maximum pointwise error

4 4 0.04

4 8 4.5E�5

8 8 3.4E�5

8 16 2.8E�8

8 32 4.1E�12

8 64 2.2E�12
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Fig. 2 shows that when the longitudinal truncation M is small, such as M = 2 or M = 4, the error

saturates rapidly as N increases: there is no point in using a lot of north–south basis functions when the

east–west resolution is too small. However, when M = 6 or larger, the error decreases (i.e., the bars in

the diagram grow taller) until N = 30. At this point the error is O(10�12), far below any reasonable

scientific/engineering requirements!

Because of roundoff, the error does not decrease further with increases in M and N beyond M = 6,

N = 30. Machine epsilon is 2 · 10�16 for our system, but the error in spectral calculations usually ‘‘pla-

teaus’’ at a level which is a hundred to ten thousand times greater as explained in [8].
One possible snag with the Mercator coordinate is that the exponentials in the mapping can lead to

underflow and numerical ill-conditioning when N is large. These can be mitigated by varying the map

parameter L and such tricks as replacing (1�tanh(y)) by its asymptotic approximation. However, these

refinements were quite unnecessary for our examples.

5.2. Example two

We also solved the Helmholtz equation with the forcing
f ¼ sinð3kÞð1� l2Þ3=2 1

½36=p2�ðk� p=6Þ2 þ 1=10

1

l2 þ 1=10
: ð18Þ
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No exact solution is known, but this example has poles in the complex plane along both the imaginary l
axis ðat l ¼ �i

ffiffiffiffiffiffiffiffiffiffi
1=10

p
Þ and imaginary x axis ðx ¼ �i

ffiffiffiffiffiffiffiffiffiffi
1=10

p
Þ as well as branch points at both the north and

south poles. The rational factors were chosen to be equally demanding in k and l so that any observed anis-

tropy would reflect Tn/TBn differences rather than differences in the scale of variation of the solution in the
two different coordinates. Because of the singularities, more basis functions are needed to achieve high

accuracy and the anisotropy is less pronounced: one needs roughly twice as many latitudinal basis functions

as longitudinal basis functions to achieve a given accuracy. Fig. 3 shows the coefficients: it is remarkable

that all coefficients near the truncation limits M = 30, N = 60 are O(10�11) or smaller!
6. Generalizations

6.1. Inhomogeneous boundary conditions

If the boundary conditions are
uð0; lÞ ¼ /leftðlÞ; uðN; lÞ ¼ /rightðlÞ; ð19Þ
the problem canbe transformed toonewith homogeneous boundary conditions for a new variable vbywriting
u � vðk; lÞ þ gðk; lÞ; ð20Þ

where
gðk; lÞ � /leftðlÞ þ ðk=NÞ /rightðlÞ � /leftðlÞ
� �

: ð21Þ
Since g satisfies the desired boundary conditions, v = 0 on both meridians. It solves the Helmholtz equation

with the modified forcing
r2vþ k2v ¼ f �r2g � k2g; ð22Þ

where $2 is the surface Laplace operator written out explicitly in (1).

Alternatively, the basis functions can deal with inhomogeneous boundary conditions directly [8].

6.2. Four corners

In a rectangular domain, the Mercator change-of-coordinate can be applied in both coordinates to map

the four corners to infinity and render them harmless. The spectral basis is a tensor product of rational

Chebyshev functions.
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7. Alternative: separation-of-variables

The Helmholtz equation in a sector can also be solved by the classic eighteenth century method of sep-

aration-of-variables. Expand
u ¼
X1
m¼1

X1
n

umn sinðmSkÞP�mS
mSþnðlÞ; ð23Þ
where S = p/N so that the boundary conditions are satisfied and the associated Legendre functions are
P�s
sþnðlÞ / ð1� l2Þs=2Csþ1=2

n ðlÞ; ð24Þ
where the Csþ1=2
n is the nth degree Gegenbauer polynomial. By invoking the differential equation satisfied by

P s
m, which is
ð1� l2Þ d
2P s

m

dl2
� 2l

dP s
m

dl
� s2

1� l2
P s
m ¼ �mðmþ 1ÞP s

m ð25Þ
and similarly expanding the inhomogeneous term in the Helmholtz equation with coefficients fmn, one finds
bmn ¼
fmn

k2 � ðmS þ nÞðmS þ nþ 1Þ
: ð26Þ
The coefficients of fmn can be computed by numerical evaluation of a double integral (in k and l) and the

Gegenbauer polynomials can be evaluated by three-term recurrence relation. It all seems so fast and easy

that one wonders why anyone but a blockhead would use anything else.

There are a couple of reasons. First, the Chebyshev/rational Chebyshev program is very short with only
seventy-one statements (excluding graphical output). It would be difficult to write a program to compute

and evaluate the Fourier–Legendre series with fewer lines; the associated Legendre/Gegenbauer functions

require some investment of both learning time and programming time. The quadratures are tricky because

the integrands have branch points at both ends of the interval of integration. L.N. Trefethen�s maxim is

applicable here: ‘‘Just because there�s an exact formula doesn�t mean it�s necessarily a good idea to use it’’.

Second, because the forcing and solution are usually not periodic in longitude when the domain is only a

sector, the Fourier series will converge at only an algebraic rate – that is, the error will decrease as a finite

inverse power of M instead of exponentially with M, where M is again the truncation of the longitudinal
series. If f(k, l) does not equal zero on both boundaries, then its series will exhibit the Gibbs� Phenomenon

[8] and its coefficient will decrease proportional to 1/M, implying that the Fourier coefficients of u(k, l) will
decrease only as O(1/M3).

This is in fact a generic difficulty of separation-of-variables series solutions, never discussed in classic

texts such as [12,18]. Unless one is content with an answer of very modest accuracy, the Chebyshev/rational

Chebyshev expansion is the better way.
8. Conclusions

There is nothing radically novel in this article in the sense that the use of a Mercator coordinate to defeat

corner singularities has been suggested before [5,22]. However, the sector-of-sphere problem is interesting

because of its anisotropy: there are only two corners instead of four as in a rectangle, and the Mercator

transformation is applied in only one coordinate instead of all. Does this anisotropy cause difficulties? Does

the combination of a Chebyshev basis without transformation with a rational Chebyshev basis in a trans-

formed coordinate degrade the spectral method?
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The answer to both these questions is a resounding No! However, the double series is highly anisotropic

in the sense that, all other things being equal, one needs significantly more basis functions in latitude than in

longitude. The rate of convergence is geometric in x but only subgeometric in y. One needs roughly five

times as many basis functions in y as in longitude for our first example and a ratio of about two to one

for our second.
The method of separation-of-variables is unsatisfactory even though it is usually regarded as an analytic

rather than a numerical method: it yields slowly-converging series whose coefficients decrease as inverse

powers of the truncations M and N. In contrast, the Chebyshev/rational Chebyshev numerical method

has an exponential rate of convergence.
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